中国听力语言康复科学杂志

期刊简介

《中国听力语言康复科学杂志》简介 《中国听力语言康复科学杂志》是由中国残疾人联合会主管、中国聋儿康复研究中心主办的双月刊,也是目前我国听力语言康复领域中唯一一本国家级学术期刊。本刊以传播听力语言康复科学的新理念、新技术、新方法为宗旨,力图为行业提供全面的科技动态,为听力语言康复事业搭建良好的信息平台。 本刊内容涵盖听力语言康复科学的多个领域,设有专家笔谈、基础研究、临床研究、康复教育、康复论坛、综述、新技术与新进展、个案研究等多个特色栏目。 Introduction to Chinese Scientific Journal of Hearing and Speech Rehabilitation Chinese Scientific Journal of Hearing and Speech Rehabilitation is a bimonthly journal managed by China Disabled Persons’ Federation and sponsored by China Rehabilitation and Research Center for Deaf Children. It is by far the only national scientific journal in the field of hearing and speech rehabilitation. It aims to spread new methods, techniques and theories of hearing and speech rehabilitation, provide comprehensive technical information and build a common information platform for rehabilitation professionals and parents of hearing-impaired children. The journal covers various aspects of hearing and speech rehabilitation and has established several characteristic columns, such as Expert Forum, Basic Research, Clinical Research, Rehabilitation Education, Rehabilitation Tribune, Review, New Technology and Case Study.

如何识别时间序列数据中的偏差?

时间:2024-11-28 17:51:39

可视化方法

绘制时间序列图:将时间序列数据绘制成折线图,直观地观察数据随时间的变化趋势。如果数据存在偏差,可能会出现不符合预期规律的情况。

季节性和周期性分解图:对于具有季节性或周期性的时间序列,可以使用季节性分解或周期图来观察。如果分解后的季节性成分或周期成分出现异常的形状、强度或相位变化,可能提示数据偏差。

统计检验方法

平稳性检验(针对非季节性数据):常用的方法有 ADF(Augmented Dickey - Fuller)检验和 KPSS(Kwiatkowski - Phillips - Schmidt - Shin)检验。如果数据应该是平稳的,但检验结果显示非平稳,且通过观察序列图没有发现明显的趋势或结构变化,可能是数据存在偏差。

白噪声检验:白噪声序列是指序列中的各项是相互独立且均值为零、方差恒定的随机变量。通过 Ljung - Box 检验等方法来检查时间序列是否为白噪声。如果数据应该不是白噪声(如存在趋势或季节性),但检验结果显示是白噪声,或者反之,可能是数据存在偏差。例如,在分析气温的时间序列时,正常情况下气温序列不是白噪声,因为有明显的季节性和趋势,如果检验结果显示是白噪声,可能是数据记录的时间间隔错误或者数据缺失导致的。

正态性检验(如果适用):对于一些时间序列模型(如基于正态分布假设的模型),可以使用 Shapiro - Wilk 检验或 QQ 图来检查数据的正态性。如果数据严重偏离正态分布,且这种偏离不符合数据的实际性质,可能是数据偏差。
与外部数据或预期对比

与行业数据对比:将自己的时间序列数据与同行业的其他可靠数据来源进行对比。如果差异显著,可能存在数据偏差。

与历史数据对比(如果有):如果有同一变量的历史数据,比较当前时间序列和历史数据的特征。

与预期模式对比:根据业务知识、领域理论或经验预期,判断时间序列数据是否符合正常模式。
模型诊断方法(如果使用了时间序列模型)

残差分析(针对拟合模型):在拟合时间序列模型(如 ARIMA 模型、指数平滑模型等)后,检查模型残差。残差应该是随机分布且均值接近零、方差相对稳定。如果残差呈现出明显的趋势、周期性或自相关性,可能是数据存在偏差或者模型设定错误。

参数稳定性检查(针对动态模型):对于具有自适应或动态参数的时间序列模型(如时变参数模型),检查参数是否在合理范围内稳定变化。如果参数出现突然的跳跃、不合理的增长或衰减,可能是数据偏差导致模型过度拟合或错误估计。例如,在卡尔曼滤波模型用于跟踪目标位置的时间序列时,如果位置参数出现不合理的突变,可能是传感器数据的偏差导致的。